If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9t^2-4t-1.8=0
a = 4.9; b = -4; c = -1.8;
Δ = b2-4ac
Δ = -42-4·4.9·(-1.8)
Δ = 51.28
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-\sqrt{51.28}}{2*4.9}=\frac{4-\sqrt{51.28}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+\sqrt{51.28}}{2*4.9}=\frac{4+\sqrt{51.28}}{9.8} $
| 0=9x-45 | | -⅔(15x+3)=-3x-9 | | 3u=69u= | | b=65+(15+7)0.1 | | b=65+(15+7)0.5 | | 0.4(8x-2)=6.2x+5 | | 44=2(3n+3)+2(2n-1) | | 5=y+38 | | 7-(5)/(2)(8r-6)+2r=76 | | 15=1/2c | | 3(c+8)=62 | | x/7=4x+3 | | -7(7x-5)=-14 | | 5n+15=-38-4n | | 3x-4-5=6x-7 | | 2(4x+6)={2}{3}23(12x+18) | | b=65+(15+7)3 | | b=65+(15+7)2 | | 6x-9+11+2x=90 | | 3x-4+5=6x-7 | | b=65+(15+7)1 | | 16x-12=14x+4 | | 3+c+8=62 | | 9(a-7)=-3(-3a-1)-10 | | 11x+16=4(2x+7 | | -2c-6=9c+9-8c | | 1/2(16−x)=−12(x+7) | | -(6x+3)=13 | | -188=-4(5+6r)-4r | | -5+t/8=-8 | | f-2/4+6=12 | | 14x-8=40+8x |